

Page 1 of 3

COMP222 Tutorial 3
Playing with the scene graph

The aim of this tutorial is to familiarise with the use of the scene graph to control how to
move game entities. We will also add lights and shadows to the scene.

You can either start from scratch or download the tutorial3.zip project from
http://intranet.csc.liv.ac.uk/~konev/COMP222/tutorials/Tutorial3.zip You can import the
project into your workspace by selecting File"Import Project"From ZIP…

The project contains the monkey robot model from http://blender.freemovies.co.uk and the
model of a table that you were developing last week. Notice that I have removed lights from
the blender files (otherwise, you would be able to see the models even if no light source is
added to the scene graph).

Tutorial 3 tasks:
The tutorial consists of several steps. The final code can be found at
http://intranet.csc.liv.ac.uk/~konev/COMP222/tutorials/LoadModels.java however, I would
encourage you follow the steps one by one rather copy from mine.

1. Scale and move the monkey so that it looks like a toy on the table
(as shown on the right).

To do that, add the following lines to your
impleInitApp()method:

monkey.scale(0.1f);
 monkey.move(1, 1, 0);

2. Make the monkey “dance” around.

To achieve that, you need to introduce a pivot node. Your scene graph
should look like the one shown on the right.
To do that, create and initialise a dancePivot field in your class

private Node dancePivot = new Node();

 and replace the

 rootNode.attachChild(monkey);

 line in the SimpleInitApp()method with

 dancePivot.attachChild(monkey);

 rootNode.attachChild(dancePivot);

Then, add the following line to the simpleUpdate(float tpf) method:

 dancePivot.rotate(0, tpf, 0);

3. Make the monkey “pirouette” as it dances around.

rootNode

table dancePivot

monkey

Page 2 of 3

You can do that by specifying that the monkey should rotate around the Y axis. Simply
add the following line to the simpleUpdate(float tpf) method

monkey.rotate(0, 4 * FastMath.PI * tpf, 0);

4. Make the monkey “somersault” as it dances and pirouettes around.

To achieve that, you need to change the scene graph structure. Your
new structure is shown on the right. Introduce another field for
somersaultPivot (same ways as for dancePivot) and change
the code in your SimpleInitApp()method to:

dancePivot.attachChild(somersaultPivot);

somersaultPivot.attachChild(monkey);

rootNode.attachChild(dancePivot);

Then update the simpleUpdate(float tpf) method:

// monkey spins

 monkey.rotate(0, 4 * FastMath.PI * tpf, 0);

 // monkey somersaults

 somersaultPivot.rotate(-FastMath.PI * tpf, 0, 0);

 // monkey dances

 dancePivot.rotate(0, tpf, 0);

5. Make the monkey jump up and down as it rotates around different axes. We will use
the trigonometric function sin 𝑥 and a timer for that.

Introduce a floating-point value field in your class

private float myTimer = 0;

We will progress the timer and use it to compute the vertical offset for the
dancePivot. Add the following code to your SimpleInitApp()method:

// monkey jumps

 myTimer += tpf;

 somersaultPivot.setLocalTranslation(1, 0.4f *

 FastMath.sin(FastMath.PI * myTimer) + .8f, 0);

You’ll notice that the monkey does not touch the table now. Remove monkey.move
from your SimpleInitApp() method. Explore what happens if instead of moving
the somersaultPivot node you move some other scene graph nodes.

rootNode

table dancePivot

somersaultPivot

monkey

Page 3 of 3

6. Set up the camera.

By default, the camera is positioned at location (0, 0, 10), which does not give a good
view at the table. Add the following line to your SimpleInitApp()method:

// Setting up the camera

 cam.setLocation(new Vector3f(0, 2, 7));

7. To make the scene more lively, add a point light by inserting the following

PointLight myLight = new PointLight();

 myLight.setColor(ColorRGBA.White);

 myLight.setPosition(new Vector3f(0, 2, 0));

 myLight.setRadius(20);

 rootNode.addLight(myLight);

into your SimpleInitApp() method. Notice that the radius determines how far
the light from the point light travels. You can further experiment with light, see
https://jmonkeyengine.github.io/wiki/jme3/advanced/light_and_shadow.html for
details.

8. Finally, we add shadows by adding the following lines to your SimpleInitApp()
method:

// The monkey can only cast shadows

monkey.setShadowMode(RenderQueue.ShadowMode.Cast);

// The table can both cast and receive

table.setShadowMode(RenderQueue.ShadowMode.

CastAndReceive);

// setting up the shadow renderers,

// every kind of light needs a separate one

PointLightShadowRenderer plsr =

new PointLightShadowRenderer(assetManager, 512);

plsr.setLight(myLight);

plsr.setFlushQueues(false); // should be false for all
 // but the last renderer

DirectionalLightShadowRenderer dlsr = new

 DirectionalLightShadowRenderer(assetManager,512,2);

dlsr.setLight(sun);

// adding them to the view port (what we see)

viewPort.addProcessor(plsr);

viewPort.addProcessor(dlsr);

